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ABSTRACT

Exact expresssions for the probabilities P (I,m—I 1k) of | correct packet receptions and
m—| erroneous ones, out of total k packets contending in a slot, are presented for the case of
frequency-hopped spread-spectrum random-access slotted networks employing random fre-
quency hopping patterns. These expressions are difficult to evaluate numerically for values of
m>3. However, our numerical analysis indicates that under light traffic conditions these proba-
bility values are very close to the ones provided by the independent receiver operation assump-

tion, under which, the distribution of multireception obeys the binomial law.
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I. Introduction

Spread-spectrum (SS) random access networks have been extensively studied during
the last few years (see [2]-[6]). From the network performance point of view, their analysis
has focused on the evaluation the throughput/delay trade-off. In [5], an analytical frame-
work for the performance evaluation of slotted SS networks was presented, which made
clear the impact of P(I,m — l|k) on performance. However, the independendent receiver
operation assumption (IROA) was used in deriving the perlformance expressions in [5], an
assumption, which is realistic in certain cases. However, there are situations in which a
more thorough investigation is necessary for drawing definite conclusions.

In this paper, an exact analysis for the multireception probabilities P(I — m,!|k) for
frequency-hopped spread-spectrum (FH/SS) random access slotted networks with random
frequency patterns is presented. The effects of Additive White Gaussian Noise (AWGN)
are omitted, because the presense of AWGN channel will randomize each receiver operation
more. Thus the primary source of interference is multiple-access (MA) inteference. Note
that the effects of AWGN could be easily incorporated in our analysis (see [4], for example).

Slotted network operation is aésumed throughout this paper but, at the symbol level,
the users need not be synchronous (see [6]) 1. Forward error conrol (FEC) coding using
RS codes is employed, as is commonly done in FH/SS systems, and two modes of decoder
operation are incorporated in our model: error correction and erasure correction.

The paper is organized as follows: in Section II, we present the expressions for the
multi-reception probabilities; in Section III, we present our numerical results and a com-

parison with the IROA ones; in Section IV, we present our conclusions.

1 Although certain, more general sitnations could be incorporated in our model, we are concerned

primarily with fully connected networks with paired-off user topology [5].



1I. Derivation of Multireception Probabilities

We are interested in finding the probability P(I, m—I|k)of I receivers receiving correctly
and m — [ ones receiving erroneously, for a specific set of receivers. Due to the symmetry
in the system, we can equivalently find the probability of the first [ receivers correctly
decoding, while the remaining m — I receivers decode in error?. We note that for MA
applications, one is interested in finding the “total” probability of ! receivers correctly
receiving, m — | ones erroneously receiving, for any configuration of ! and m — [. The
probability Pr(l,m — l|k) can be found from P(I,m — l|k) to be

m

Pr(l,m - I|k) = ( ) . P(l,m — |k).

l

Moreover, under TROA this total probability obeys the binomial law. If we denote by
Pi(l,m — l|k) the probability of a particular set and Pr j(l,m — l|k) denotes the total

probability under IROA, we have

m

PT’I(l,m—llk)= ( ) 'P](l,m—llk).

l

Obviously, Pi(l, m — l|k) obeys a geometric law with respect to P.(k), the probability of
correct decoding of each paricular receiver.

For FH/SS MA communications, the probability of a coded symbol error is upper-
bounded by the probability of a hit, which is a function of the available frequency slots
g and the number of contending users k. We denote this probability by P s(k,q) and

Py, o(k, q) for the synchronous and asynchronous cases, respectively. From [2] we have

Ph,s(q,k) =1- (1 _ 1/q)k—1

*In the sequel, we implicitly assume that m > 2. For m = 1, the model reduces to the single receiver

model and corresponds to the analysis of [2].



and

Pro(g,k)=1- (1- Q/q)k—l

respectively. Subsequently, we denote by P (k, ¢) the probability of a hit and, hencetoforth,
treat both cases simultaneously.

The ith receiver receives correctly the transmitted packet, if the number of hits h(¢),
for 1 € i < m, satisfies

0<h(i) <t (1)

In (1), t denotes the correction capability of the code. For pure error-correction,

[dminz— 1] _ N ; K @)

while, for erasure correction,
t=dnpin—1=N-K. (3)

In the synchronous case, each receiver output depends only on other receivers out-
puts during the same dwell time. This applies also to the asynchronous case, if proper
interleaving takes place (see [6]). Then the total system operation becomes memoryless.

In this section, we first present exact expressions for P(I,m — l|k); then we show that
IROA gives a good approximation to the probabilities P(I, m —!|k) under conditions which
are commonly met in practical applications.

ITa. Exact Analysis of P(I,m — l|k)

As ampliﬁed in Appendix I,

P(l,m-1Uk) =

=PO<h(1)<t,.. ,0<h()<t,t+1<h(I+1)<N,...,t+1<h(m)< N)=



vroxx () ()(2)

& L fom _o bom 3 \ £y lom_o

Pi P2 P (4)
where P; = P(FE;) denotes the probability of the ”simultaneous” event E;, under which

the demodulator outputs correspond to the binary representation of ¢ — 1 during the same
numbered symbol. Of course, any other correspondence of ”simultaneous” events and the

natural numbers would work as well. 3

The range of {; for the sums in (4) can be found from a Diofantine analysis of the

inequalities:
2m-1
0< Y dg<t, i = 1,2, (4a)
i=1 :
and
m_1
t41< Y d g <N, i = 14 1,142,..m (4b)
j=1

where ag-i) = 1or 0, according to whether the probabilities of the form Pg; that correspond

to £; take part in the ith receiver error count or not. We have to add another constraint

to the m constraints posed by (4a,4b), namely that

2m—1
0< Y <N . (4¢)
=1

The purpose of that constraint is to ensure that we do not surpass the word length by

permitting higher values of the {;s.

It remains to find expressions for all Pg,, for ¢ = 1,2,.--,2™, This is equivalent to

finding the probability of having p demodulator outputs correct and m — p ones in error

Note that in (4), all events having same weight have equal probabilities, although this does not simplify

the expression.



during the same numbered transmitted symbol, for p = 1,2,...,m. These probabilities
should be a function of p,m,k, and q. We denote them by Ps(p,m,q,k). First we find
Pg, = P... = Py(m,0,k,q), that is, the probability of finding all the simultaneous symbols

in all receivers correct. Because of the symmetry we get

P....= Plcle...c)-P.....=
m m-—1 me1

= P(c|c.\.’.lc) . P(clc.\.’_./c) ...P(clec) - P(ele) - P(c) =

m-—1 m-—2

- [lG-Pg-i+1k-i+1) . )

Let us now find Pg,,, = P,;R,’:/e = Py(0,m,q, k). We get Pe\,\;/e =

m m

= P(eleg.’.le)Peg,’:/e =

m-—1 m—1

1- P(cle%_./e)] . Pe\.\.;e) =

m-—1 m-—1

P(e...elc)- P(c)

= 1-— . P =
P.... L
N~ m-1
m-1
= P....e — P(c)-Ple...elc) =
m-1 m-—1

= Pe«’_/e ~ (1 - Pu(q,k)) Ps(0,m—-1,g-1,k-1) =

m-—1

= Ps(oymaq,k) = Ps(O’m_ 1aQ>k)_(1_Ph(q’k))'Ps(Oam_l’q—' 1,k - 1) (6)

Equation (6) is a recursive formula for finding P,(0,m, g, k). The solution of this equation,

as shown in Appendix II, is

m m 1
Ps(O’m,q’k) =1+ E(—l)t( ) H(l—Ph(q—]+17k_]+1)) (7)
i=1

? j=1



Proceeding one step further we get the more general expressions

PE; = Ps(Pam'—p’qak):

= Ps(P,m—Pﬂ"P,k—P)‘Pc\-\-’-/C

p
= [[Q~Pulg—5i+1,k—-j+1)x
=1

m—p m-p\ i
[1+ Z(_l)i.( )-H(I—Ph(q—P—j+1,k—P—j+1)) . (8)
=1

i i=1

Equations (4) and (8), together with the constraints posed by (4a), (4b), (4c), give the
solution to our problem. As it becomes clear from (4), the exact evaluation of P(l, m—I|k)
requires the computation of 2™ — 1 dependent sums, in which the limits should be found
through a Diofantine analysis of (4a),(4b), and (4c). In addition, the summands are powers
of P(E;), which can computed through (8). Due to those computational requirements,
exact expressions are nearly impossible to evaluate m > 4. However, as the next subsection
indicates, for a ¢ that is large enough in comparison to k, IROA can be used as a good
approximation.
IIb. Approximate Analysis

We shall show that, if the number of frequency slots is large enough in comparison to
k (¢ > k), then P(l,m — l|k) can be approximated closely by assuming that the receivers
operate indepéndently.

To prove this, we first notice that equation (4) is valid for any probability law on

the events E;. This means that (4) should be true, even if the demodulator outputs are



independent during the same symbol transmission. In this case, however, (4) simplifies to
the binomial law. Therefore, IROA results for multireception probabilities become easy
to compute as they obey a geometric law 4.

If we assume that ¢ > k, then it suffices to show that Py(I,m — [, k, ¢) can be approx-
imated by the corresponding expression, when all receivers operate independently. That
is,

Ps(l’m - laQak) = (1 - Ph(q,k))l ‘ Ph(q’k)m_’

We see that (9) is equivalent to the following two equations
Py(m,0,q,k) ~ (1 — Pr(q, k)"

and

Ps(o’ mank) ~ Ph(q) k)m

The first approximation can be shown as follows

m

Ps(m’oaqvk): H(l_Ph(q_]'*'l,k—']‘*‘l)):
J=1

=~ (1 - Py(q, k)"

where the approximation is valid through our assumption on ¢ and the form of the ex-

pressions giving Pr(g, k). Now, let us consider P;(0,m,¢,k). We get

P3(07msQak)=1+§:(_1)i( ) 'Itl(l_Ph(ch))z
t=1 7 j=1

m

1

1431 ( ) (1 - Pu(g, b)) =
i=1

=(1-1-Pu(g, k)™ = Pulg, )™

*The total probability of I correct receptions and m — ! erroneous ones obeys the binomial law.
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where the appproximation holds for the same reasons as above and the last equation
follows from the binomial theorem.

This establishes the validity of our approximation. Note that in many practical ap-
plications, the generated traffic is light. In such cases, the condition ¢ > k is easily
satisfied.

III. Numerical Results

In this section, we present our numerical results and comparisons. As explained in
previous section, the evaluation of P(I, m — I|k) becomes prohibitive for m > 4, so that
only results for m = 2 and m = 3 are presented. We consider asynchronous FH/SS with
RS (32,16) coding and error-correction decoding 5.

In Table 1, we present our results for m = 2, for different values of ¢ and k. Both
exact and approximate results (IROA) are included for comparison. Table la contains
the corresponding results for P(2,0]k). An examination of these results shows that IROA
gives high accuracy, specially for ¢ 3> k, in accordance to our approximation in Section II.
This is also true for P(1,1|k). On the other hand, as the number of contending users &
increases, the approximation becomes less accurate. However, for large values of k, both
P(l,m —l|k) and Pr(l,m — l|k) become very small.

In Table 2, we make the same comparisons for m = 3. For this case, three subtables
are included. Table 2a presents results for P(3,0|k), Table 2b for P(2,1|k), and Table
2¢ for P(1,2|k). We see that IROA gives results close to the exact ones with improving
accuracy as ¢ increases (777) with respect to k.

An interesting fact that, as we have discovered, holds true in all numerical analysis

Larger blocklengths will randomize more each receiver operation.



we have performed, is that P(m,0}k) is higher than Pr(l, m — l|k). In other words, IROA
seems to give “pessimistic” results in comparison to the exact analysis. The interested
reader can consu[4] for more numerical results.

Based on the results presented above, we can draw some conclusions, at least for the
cases m = 2 and m = 3. IROA gives good approximation to the probability P(I,m —|k);
the accuracy of the approximation depends on the specific values of ¢ and k, for ¢ > &,
the corresponding results are almost the same with the exact ones.

The kind of behavior observed so far is expected to be true for higher values of m, as
well. In addition, more complicated scenarios with AWGN and erasure decoding randomize
each receiver operation even more.

IV. Conclusions

For FH/SSMA communications, we present exact expressions for the multireception
probabilities P(l,m — l|k). These expressions, however, are very difficult to evaluate for
m > 4, as they require computation of 2™ — 1 sums. At the same time, we establish the
validity of the IROA, at least for the case ¢ > k. Additionally, our numerical analysis
indicates that IROA is a good approximation for the multireception probabilities, for
m = 2 and m = 3. Therefore, it appears that IROA gives realistic results, while requiring

minimal numerical effort.



Appendix I

In this appendix, we derive the expression for P(l,m — l|k) as a function of the prob-
abilities Pe..... Let ¢, k denote the number of frequency slots and contending users in the
slot, respectively.

For receiver 7, 1 < ¢ < m, let ¢; be a vector having 0 in the positions of correct symbol

reception and 1 in the positions of error reception, that is,
& = (eilyei%' * ',eiN)-
For hard decision decoding, the ith receiver decodes correctly the received packet iff

N
0< Ze,-j <t
j=1

while it decodes erroneously iff

N
t+1SZeijSN-
J=1

Let us now turn our attention to the intereceiver operation. For the jth transmitted

symbols, for 1 < j < m, we define the vector of simoultaneous event E; as
E; = (e1jy-++,€mj)-

As each e;; takes on two possible values, there is a total of 2™ possible E;, for each j. As
slotted operation is assumed throughout, statistics are the same from symbol to symbol,
so that the description of the system is independent of the particular symbol j. Then we
can arbitrarily assign enents E to symbol events e;. However, we choose for clarity the
correspondence

Ei= (61,"',6m)

10



so that i — 1 is equal to the binary representation of (e1,---,en). If we define by I; the
number of times a particular event F; occurs, we get, due to the memoryless operation

assumption, the result given by (4).

11



Appendix I

In this appendix, we prove that P.(m,q, k), given in (7), is the solution to the recursive
m
equation described by (6). For compactness, we denote the binomial coefficients ( )
i
by Cn. .

First we observe that, for the binomial coefficients Cy, ;, the following recursion is true
Crmt1,i = Cjiz1 + Crnsi- (A2.1)

Then, by direct subtitution of (8) to the right hand side of (7), we get

m~1 t
14 ) (~1)Cmeri [[ (A= Prlg—j+ 1,k— 5+ 1))~
1=1 7=1

~ (1 - Py(q,k)) (1 + mZ_j (=1)'Crm-1;i II (1= Pulg—J,k— J’))) =

=1 1=1
m-—1 . i
=1-m(1—-Pu(g,k))+ D (1) (Crm-r;i+ Crmri-1) [[ (1 = Palg~ 5+ Lk—j+ 1))+
i=2 i=1

+H(~1)"Crmetm-1 [ (1 = Palg -+ Lk—j+1)) =

=1
=143 (-1 Cms [[ (- Pulg -5 + L,k —j+ 1)) (42.2)
=1 j=1

From (A2.2) we see that (6) has as solution the expression given in (7).

12
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Table 1a
Probabilities P (2,01k) (exact) and P;(2,01k) (under IROA)

for asynchronous FH/SSMA with RS (32,16) coding and error-correction decoding

k=5 k =10 k =20 k=50
q Exact IROA Exact IROA Exact IROA Exact IROA
10 | 44x10°% | 39x10% | 1.6x107% | 1.7x107%° 0.0 0.0 0.0 0.0
50 0.9200 09152 0.1065 0.0967 9.1x107 | 7.1x107 | 2.4x107% | 2.4x1072°
0.8630 0.8612 | 7.4x1072 | 7.0x1072 | 2.6x107'° | 2.3x1071°

100 0.9989 0.9988
Table 1b

Probabilities P (1,11%) (exact) and P;(1,11k) (under IROA)

for asynchronous FH/SSMA with RS (32,16) coding and error-correction decoding

k=5 k=10 k =20 k =50
9 Exact IROA Exact IROA Exact IROA Exact IROA
10 | 9.8x10™ | 98x107° | 4.1x107P | 4.1x10°0 0.0 0.0 0.0 0.0
50 | 3.8x1072 | 4.1x10%2 | 02045 02142 | 8.4x107™* | 84x10™% | 49x107% | 4.9x10°"5
100 | 54x107* | 55x10* | 6.4x102 | 6.6x10% | 0.1906 0.1906 1.5x107° | 1.5x107°




Table 2a

Probabilities P (3,01k) (exact) and P;(3,01k) (under IROA)

for asynchronous FH/SSMA with RS (32,16) coding and error-correction decoding

k=5 k =10 k =20 k =50
7 Exact IROA Exact IROA Exact IROA Exact IROA
10 | 9.3x10°1" | 94x1071! 0.0 0.0 0.0 0.0 0.0 0.0
50 0.8863 0.8857 397x1072 | 3.0x1072 | 1.2x10°° | 0.9x10°° 0.0 0.0
100 0.9983 0.9983 0.8053 0.7993 | 2.1x1072 | 1.8x102 | 4.9x10°1 | 3.4x10°15
Table 2b
Probabilities P (2,11k) (exact) and P;(2,11k) (under IROA)
for asynchronous FH/SSMA with RS (32,16) coding and error-correction decoding
k=5 k =10 k =20 k =50

9 | Exact | IROA Exact IROA Exact | IROA Exact IROA
10 | 9.6x107 | 94x1070 | 1.6x1079 | 1.6x10% 0.0 0.0 0.0 0.0

50 | 3.9x107% | 43x10% | 6.6x1072 | 72x1072% | 7.0x107 | 8.4x107 | 24x107% | 3.3x107%
100 | 55x10* | 5.6x107* | 62x102 | 6.5x1072 51x7% | 53x1072 | 2.2x10719 | 2.2x10710

Table 2¢
Probabilities P (1,21k) (exact) and P;(1,21k) (under IROA)
for asynchronous FH/SSMA with RS (32,16) coding and error-correction decoding
k=5 k=10 k=20 k =50

q Exact IROA Exact IROA Exact IROA Exact IROA
10 | 9.8x10 | 9.8x107 | 4.1x10°° | 4.2x107P° 0.0 0.0 0.0 0.0

50 | 1.7x1073 | 1.7x1073 0.1476 0.1476 8.3x107% | 84x107™* | 4.9x107™"5 | 5.3x107!5
100 { 3.0x107 | 2.6x10°7 | 4.8x107 | 4.8x10° | 0.1434 0.1430 1.1x107° | 1.1x107°




